DATA ! DATA ! Partout des DATA !
De nos jours, la donnée est partout, mise en avant dans tous les nouveaux projets et toutes les stratégies d’entreprise. C’est la clé de la performance dans une époque pleine d’incertitudes. Chez Datanalysis, nous en sommes les premiers convaincus car il s’agit d’un outil puissant et accélérateur de performance… lorsque celle-ci est bien utilisée, bien comprise et bien maîtrisée !
Dans cette nouvelle série d’articles, nous allons donc parler du grand méchant loup ; du diable qui se cache dans le détail (ou qui se révèle parfois au grand jour) et évoquer avec vous les 7 principaux types de pièges posés par la donnée et son usage. Nous tâcherons autant que possible de les illustrer par un exemple de notre propre expérience car en tant qu’experts nous avons eu la chance de faire face dans nos missions à chacun d’entre eux…
Remarque : Ces pièges sont ceux évoqués dans le livre de Ben Jones, « 7 data pitfalls » que nous vous conseillons chaudement !
Trêve de suspense, dévoilons à présent les 7 familles de péchés capitaux de la DATA que nous allons explorer plus en détail pendant les 7 prochaines semaines :
1. Erreurs Epistémologiques : comment pense-t-on aux données ?
Souvent nous utilisons les données avec le mauvais état d’esprit ou des préconceptions erronées. Ainsi, si nous nous attaquons à un projet d’analyse en pensant que les données sont une représentation parfaite de la réalité ; que nous établissons des conclusions définitives sur la base de prédiction sans les remettre en question ; ou que nous cherchons dans les informations disponibles tout ce qui pourrait confirmer une opinion déjà faite ; alors nous pouvons créer des erreurs critiques dans les fondations même de ces projets.
2. Erreurs Techniques : comment sont traitées les données ?
Les enjeux techniques et technologies sont souvent une source importante d’erreurs dans le monde de la donnée. Une fois que l’on a identifié les informations dont on a besoin se dresse devant nous une série importante d’obstacles à franchir. Est-ce que mes capteurs sont fonctionnels ? Est-ce que mes traitements ne génèrent pas des doublons ? Est-ce que mes données sont propres ou bien mises à niveau ? Des enjeux complexes dans nos projets ! En effet, ne dit-on pas qu’un data analyst passe la majeure partie de son temps et de son énergie à préparer et nettoyer ses données ?
3. Erreurs mathématiques : comment sont calculées les données ?
Et voilà, vous savez maintenant à quoi vous servent vos cours de mathématiques de vos années d’école, de collège et de lycée ! Il y en a pour tous les niveaux et pour tous les goûts ! Que celui qui n’a jamais associé des données qui ne sont pas au même niveau de détail, qui ne s’est pas trompé dans le calcul de ses ratios, ou qui n’a pas oublié qu’il ne faut pas mélanger carottes et bananes, nous jette la première pierre !
4. Erreurs Statistiques : comment les données sont mises en relation ?
Comme le dit l’adage, « Il y a des mensonges, des maudits mensonges et des statistiques ». Il s’agit là du piège le plus complexe à appréhender car de sacrées compétences sont nécessaires pour en bien comprendre les enjeux. Toutefois, dans un monde où le machine learning, le datamining et l’IA sont rois, c’est une famille d’erreurs qui ne fait que devenir plus fréquente !
Les mesures de tendance centrale ou de variation que nous utilisons nous égarent-elles ? Est-ce que les échantillons sur lesquels nous travaillons sont représentatifs de la population que nous voulons étudier ? Est-ce que nos outils de comparaison sont valides et significatifs statistiquement ?
5. Aberrations analytiques : comment sont analysées les données ?
Et voilà, vous savez maintenant à quoi vous servent vos cours de mathématiques de vos années d’école, de collège et de lycée ! Il y en a pour tous les niveaux et pour tous les goûts ! Que celui qui n’a jamais associé des données qui ne sont pas au même niveau de détail, qui ne s’est pas trompé dans le calcul de ses ratios, ou qui n’a pas oublié qu’il ne faut pas mélanger carottes et bananes, nous jette la première pierre !
Règle d’or: nous sommes tous des analystes (que l’on porte ce titre ou non).
Dès lors que nous utilisons des données pour prendre des décisions alors nous sommes des analystes et nous sommes donc sujets à prendre des décisions sur des analyses aberrantes. Connaîssez-vous par exemple les ‘vanity metrics’ ? Ou avez-vous déjà fait des extrapolations qui ne font aucun sens au regard des données utilisées ?
6. Gaffes graphiques : comment sont visualisées les données ?
Contrairement aux erreurs statistiques ou aux aberrations analytiques, les gaffes graphiques sont bien connues et facilement identifiables. Pourquoi ? Parce que celles-ci se voient (et souvent de loin). Avons-nous choisi un type de graphique adapté à notre analyse ? Est-ce que l’effet que je souhaite montrer est clairement visible ?
7. Dangers esthétiques : le beau peut être l’ennemi du bien ?
Quelle différence avec les gaffes graphiques ?
Ici nous parlons du design général du produit final et des interactions que nous avons définies dans celui-ci pour que l’auditoire que nous cherchons à convaincre aient l’expérience la plus ergonomique et esthétique possible ! Est-ce que le choix des couleurs qui a été fait rend l’analyse confuse ou au contraire la simplifie ? Est-ce que nous avons utilisé de notre créativité pour rendre nos dashboards agréables à l’œil et avons-nous utilisé l’esthétique pour apporter de l’impact à l’analyse qui est faite ? Est-ce que le produit final est simple à utiliser, ergonomique ou les interactions sont complexes et poussives ?