Business Intelligence

Business Intelligence, Clients, Company, L'entreprise

A la conquête de Madagascar…

DATANALYSIS et S@phir Conseils signent un partenariat pour accompagner les entreprises Malgaches dans le déploiement de plateformes d’analyses de données en self-service grâce à une gamme complète de services, de conseil et de solutions.

Pour la rentrée 2021, DATANALYSIS se lance un nouveau challenge ! La société étant déjà présente sur les belles îles de la Réunion et Maurice (sous la marque Business Lab Consulting), nous avions envie d’élargir notre scope d’activités et de continuer à explorer les données à travers l’Océan Indien.

Pourquoi Madagascar ?

La grande île est en pleine essor et malgré l’instabilité qu’on lui connaît, elle se développe grâce à de nombreux secteurs industriels à forte valeur ajoutée comme l’agro-industrie, le textile, les nouvelles technologies, le tourisme ou encore l’artisanat. 

Stéphane MASSON et son équipe ne ratent jamais une occasion de faire connaître leur méthodologie et leur expertise leur permettant d’aider efficacement une nouvelle clientèle.

Et pour pouvoir avancer de façon construite et réfléchie, rien de mieux qu’avoir un partenaire local !

Représentée par Monsieur Jacques RAKOTOARIVELO, S@PHIR, entreprise de conseils en informatique, a choisi de mener cette aventure à nos côtés et nous en sommes reconnaissants.

Munis de nos meilleurs outils, nous sommes donc prêts à relever le défi, jongler avec de nouvelles données et par-dessus tout : aider et accompagner le marché malgache à prendre les meilleures décisions qu’il soit. #wearedatapeople

Business Intelligence, Data Governance, Data Marketing, Data Mining and Data Integration, Data Quality Management, Machine Learning

RETAIL : 4 règles pour devenir Data Driven // S3E4

Face à des freins culturels et organisationnels, il est difficile de déployer la culture de la donnée dans les entreprises du retail. Diffuser la culture de la donnée en magasin veut dire donner le pouvoir aux employés de mieux vendre. La question principale est donc de dépasser les obstacles, et d’accompagner le changement.

 

Voici les 4 règles clés à suivre durant votre transformation :

1. Soyez soutenu(s) par votre hiérarchie

Mettre la culture de la donnée au cœur de l’organisation est une prérogative du haut management. Il faut emmener l’ensemble de vos collaborateurs dans la transformation. Il y a parfois des freins culturels, les personnes non issues de l’ère numérique, conservent des réflexes. Du jour au lendemain, elles sont invitées à repenser leurs habitudes. Il est donc nécessaire d’adopter une conduite de changement.

2. La communication, c'est la clé

Tout lancement d’un nouveau projet implique forcément des changements de processus et des changements organisationnels. Pour réussir, il vous faut communiquer pendant toute la durée du projet.

Pour créer une culture de la donnée (dite « Data Driven culture ») vous devez penser votre projet pour que les données puissent être communiquées à des non-spécialistes. Gartner précise qu’une des caractéristiques fondamentales d’une culture de la donnée est la mise à disposition de la donnée de manière simple et claire à toutes les personnes en entreprise. Par exemple, utilisez une solution logicielle de tableau de bord « retail » ou de visualisation de données pour restituer de manière claire vos données. Et par conséquent, prendre des décisions éclairées !

Vous pouvez même raconter des histoires avec vos données en leur donnant du contexte grâce aux solutions de « data storytelling » comme dans Tableau Story.

Vous pouvez rendre vos tableaux de bord simples personnalisables. Par exemple, chaque point de vente devrait être en mesure de s’approprier et d’analyser ses données « retail ». Il appréciera de pouvoir changer l’angle de vue en fonction de ses besoins. Passer d’une vision par produit, à une vision par client (B2B), ou d’une vue « directeur de magasin » à une vue « team leader », ou d’une vue produit à une vision par zone géographique, etc. La personnalisation de l’angle de vue est fondamentale pour que la donnée soit vulgarisée et comprise par l’ensemble du personnel en magasin. D’autre part, vu le nombre d’informations auxquelles il est exposé, il est important de rester simple pour une communication efficace.

Simplicité, efficacité ; n’est-ce pas ?

3. Focus : les motivations personnelles de vos collaborateurs pour améliorer le taux d'adoption des outils

Vous devez intéresser le personnel de vos magasins par les données qui sont à sa disposition. Vos collaborateurs doivent voir des solutions à leurs problématiques métiers dans le projet ; c’est une étape essentielle pour un projet data réussi. Par exemple, la rémunération variable du personnel est souvent fonction des résultats des ventes du magasin. Lui donner des solutions concrètes pour mieux vendre est donc dans son intérêt.

Fournir des tableaux de bord retail personnalisés et simples, est un enjeu de votre projet. Imaginez un mini site internet fournissant au directeur du magasin le tutoriel sur la nouvelle disposition des articles en magasin, l’emploi du temps de la semaine, les performances de vente par produit…Une mini-plateforme personnalisée lui fournissant des informations pour lui et son équipe : le rêve !

Si vous souhaitez la réussite de votre organisation (on n’en doute pas une seule seconde !), vous devez penser « adoption par les collaborateurs » de votre projet.

4. Enfin : rendre toutes ces données actionnables et pertinentes !

Le défaut de nombreux projets data est qu’ils naissent sans être pensés pour des cas d’usage métier précis. La donnée est privilégiée au détriment de l’apport métier. Nous pensons que c’est une vision purement technique de voir les choses ! Avoir les données à disposition n’est pas le but du projet data. La finalité est de pouvoir fournir des informations actionnables à des professionnels et répondre à leurs problématiques.

La Data permet de réhabiliter l’efficacité des stratégies marketing en offrant aux retailers l’approche « ROIste » qu’ils réclament. Le Data Storytelling permet, lui, de légitimer et valoriser les choix en systèmes d’information qui récupèrent cette Data, en la racontant aux magasins. Ces derniers peuvent désormais prendre les meilleures décisions.

La Data est votre nouvelle monnaie. Mieux que de l’échanger, il faut la faire fructifier et la rendre exploitable. La question n’est plus « Pourquoi ?», mais « Quand ?». Faites-nous confiance, nous nous occupons du « Comment ?».

Nous espérons que cette mini-série spéciale « Data & Retail » vous a plu ! Nous vous encourageons à lire les articles précédents si ce n’est pas déjà fait…

Nous vous préparons la rentrée avec d’autres mini-séries à venir! Des thématiques que vous souhaiteriez voir abordées par ici ? Ecrivez-nous !

Cet article vous a inspiré ?
Business Intelligence, Data Governance, Data Marketing, Data Mining and Data Integration, Data Quality Management, Machine Learning

RETAIL: Data Science & Insights // S3E3

La Data Science est la science des données. C’est un ensemble de techniques et de méthodes qui permettent à une organisation d’analyser ses données brutes pour en extraire des informations précieuses permettant de répondre à des besoins spécifiques ou de résoudre des problèmes analytiques complexes.

La Data Science permet de découvrir des informations pertinentes au sein des ensembles de données

En plongeant dans ces informations à un niveau fin, l’utilisateur peut découvrir et comprendre des tendances et des comportements complexes. Il s’agit de faire remonter à la surface des informations pouvant aider les entreprises à prendre des décisions plus intelligentes.

Cette « fouille de données » peut se faire grâce à l’apprentissage automatique (Machine Learning). Ce dernier fait référence au développement, à l’analyse et à l’implémentation de méthodes et algorithmes qui permettent à une machine (au sens large) d’évoluer grâce à un processus d’apprentissage, et ainsi de remplir des tâches qu’il est difficile ou impossible de remplir par des moyens algorithmiques plus classiques.

La Data Science permet de créer un Data Product

Un data product est un outil qui repose sur des données et les traite pour générer des résultats à l’aide d’un algorithme. L’exemple classique d’un data product est un moteur de recommandation.

Moteur de recommandation

Il a été rapporté que plus de 35% de toutes les ventes d’Amazon sont générées par leur moteur de recommandation. Le principe est assez basique : en se basant sur l’historique des achats d’un utilisateur, les articles qu’il a déjà dans son panier, les articles qu’il a notés ou aimés dans le passé et ce que les autres clients ont vu ou acheté récemment, des recommandations sur d’autres produits sont automatiquement générées.

Optimiser votre gestion de stock

Un autre exemple de cas d’usage de la data science est l’optimisation de l’inventaire, les cycles de vie des produits qui s’accélèrent de plus en plus et les opérations qui deviennent de plus en plus complexes obligent les détaillants à utiliser la Data Science pour comprendre les chaînes d’approvisionnement et proposer une distribution optimale des produits.

Optimiser ses stocks est une opération qui touche de nombreux aspects de la chaîne d’approvisionnement et nécessite souvent une coordination étroite entre les fabricants et les distributeurs. Les détaillants cherchent de plus en plus à améliorer la disponibilité des produits tout en augmentant la rentabilité des magasins afin d’acquérir un avantage concurrentiel et de générer de meilleures performances commerciales.

Ceci est possible grâce à des algorithmes d’expédition qui déterminent quels sont les produits à stocker en prenant en compte des données externes telles que les conditions macroéconomiques, les données climatiques et les données sociales. Serveurs, machines d’usine, appareils appartenant au client et infrastructures de réseau énergétique sont tous des exemples de sources de données précieuses.

Ces utilisations innovantes de la Data Science améliorent réellement l’expérience client et ont le potentiel de dynamiser les ventes des détaillants. Les avantages sont multiples : une meilleure gestion des risques, une amélioration des performances et la possibilité de découvrir des informations qui auraient pu être cachées.

La plupart des détaillants utilisent déjà des solutions liées à la Data Science pour augmenter la fidélisation de la clientèle, renforcer la perception de leur marque et améliorer les scores des promoteurs.

Et vous, quand est-ce que vous ouvrez votre précieux sésame ?

Cet article vous a inspiré ?
Business Intelligence, Data Marketing, Data Mining and Data Integration

RETAIL: Maîtriser vos données métiers // S3E2

Dans l’épisode précédent, nous avions présenté la qualité des données et les enjeux d’une mise en place de process de fiabilisation et de suivi de l’évolution de la donnée au sein d’une organisation. Dans cet épisode, nous vous parlons d’une méthode de gestion de données appelée la « la gestion des données de référence » ou MDM (Master Data Management).
Connaissez-vous cette méthode ?
pexels-fauxels-3184287 (1)

Le MDM consiste à centraliser la gestion de données dites essentielles intéressant les grandes applications de l’entreprise. Il implique une réflexion plus globale sur l’urbanisation du SI. Tant du point de vue des données que des processus.

Pour mieux cerner la notion de « gestion des données de référence », faisons un tour d’horizon de ce domaine, des fonctionnalités proposées par les outils du marché, et les principaux acteurs.

LES ENJEUX

Le référentiel de données n’est pas une notion nouvelle. Mais le MDM est lui un concept émergent qui prend toute sa dimension aujourd’hui.  En effet, la complexité croissante des systèmes d’information souvent éclatés suite à des réorganisations d’entreprises, la volumétrie croissante des informations à gérer, la multiplication des contraintes réglementaires obligent le gestionnaire à mieux maîtriser les informations clés de l’activité de l’entreprise : clients, produits, fournisseurs, etc.

Si la notion de dictionnaire ou « référentiel de données » n’est pas nouvelle, le concept-même de MDM est apparu en 2003 et prend vraiment son essor actuellement. Historiquement, celui-ci s’est développé dans des contextes très verticalisés, et sous deux angles :

La gestion des catalogues produits (ou PIM pour Product Information Management) notamment dans les domaines de la grande distribution (retail) et du manufacturing,
L’intégration des données clients (ou CDI pour Customer Data Integration) particulièrement pour l’administration de grosses bases de données transactionnelles (gestion des doublons, vérification et homogénéisation des adresses, etc.).

Ce concept désormais d’autres problématiques et concerne la gestion des tiers et personnes, des produits et des offres, de l’organisation et des structures͕ des nomenclatures et des codifications, de la configuration et des paramètres.

LES CONTRAINTES EXTERNES

Face à la mondialisation et à l’ouverture des marchés͕ les entreprises et organismes publics connaissent de multiples restructurations et opérations de fusion et doivent s’adapter à des contextes d’internationalisation pour se maintenir dans la course et s’ouvrir de nouvelles opportunités de business. Ces structures doivent faire face à de multiples contraintes qui régissent leur environnement :

La complexité croissante des contraintes réglementaires (Bâle II, IFRS, MIF, etc.) nécessite de collecter plus de données, de justifier  davantage les opérations, d’avoir  plus de transparence au niveau de la présentation des résultats,
Une compétitivité plus forte : face à la mondialisation et à l’ouverture des marchés, il faut être en mesure d’anticiper les tendances du marché, mettre en place de nouvelles offres pour répondre aux clients exigeants, répondre à la pression des actionnaires, et enfin pouvoir se mesurer régulièrement à la concurrence,
Les impératifs de rentabilité sont incontournables face à l’accroissement des risques opérationnels,
Une organisation centrée sur le client : il s’agit de lui proposer le bon produit, sur le bon canal au bon moment.

LES CONTRAINTES INTERNES

En interne aussi, la gestion de l’information est soumise à des contraintes nombreuses et complexes dues à :

La multiplication des systèmes et applications,
La multiplication des données (structurées ou non) avec la dispersion, la redondance et les incohérences sur les données les plus essentielles, les désaccords internes sur la valeur à attribuer à telle ou telle donnée, les définitions incorrectes sur certaines données, la difficulté d’accès et de manipulation des données͕ l’absence de gestion unifiée et maîtrisée des données clés de l’entreprise,
L’apparition  de nouveaux impératifs métier qui nécessitent d’avoir l’information quasi en temps réel , et de se doter des bons indicateurs pour réduire les risques opérationnels.

LES GRANDES FONCTIONNALITES

Parmi les fonctions du Master Data Management, on distingue :

Les fonctions de base : la gestion du référentiel centralisé, la gestion de catalogues multiples (clients, produits, etc.), la gestion du cycle de vie des données, la gestion des versions Développement, test, production), la gestion des types et liens entre données,
L’intégration : la synchronisation; le profiling de données et la gestion de la qualité de données, la réplication͕ la transformation͕ l’intégration des données et applications ;au sens chargement ETL des données),
La modélisation : les outils de modélisation, la découverte et le mapping des données, la gestion des hiérarchies complexes et sémantiques,
La gouvernance  la gestion de la sécurité͕ l’interface utilisateur métier͕ les fonctions de recherche et d’accès͕ le workflow,
Les fonctions avancées : l’évolutivité, pour étendre le référentiel à d’autres catégories de données via des modèles de données standardisés et extensibles ; la présence d’un moteur de règles, pour piloter et conditionner les processus de mise à jour dans les référentiels ; les fonctions natives de workflow enrichies d’étapes de validation humaines lors du design des flux, la réconciliation des données clients produits entre les différentes applications des fonctions exposées sous forme de Web services pour faciliter le dialogue synchrone avec le référentiel, l’intégration native avec les outils ETL (Outils d’intégration de données) et les outils de gestion de qualité des données.

Use case : l'exemple de Domino's Pizza

Challenge

L’entreprise avait besoin de gérer ses données référentielles afin d’optimiser ses ventes et profits

  1. L’entreprise avait une directive stratégique d’identifier de façon unique un client et son comportement d’achats.
  2. Les informations des clients étaient dupliquées et se trouvaient dans différents systèmes. A savoir : l’application web et mobile de commande de Pizzas, le CRM et Applications de gestion commerciales (POS).

Stratégie

Création d’une stratégie Data orientée Client en 3 grands axes :

  1. Implémentation d’une gestion de données de référence (MDM) des données clients avec la création de « Golden records » (enregistrement unique pour identifier un client) dans le CRM, ERP, et les applications décisionnelles.
  2. Automatisation de la validation et l’identification des différences entre les systèmes opérationnels en utilisant des règles de gestion métiers.
  3. Transformation, nettoyage et synchronisation des enregistrements entre les différents systèmes et création d’un workflow permettant de maintenir les données entres les différentes entités du système.

Résultats

  • Optimisation des ventes et de la profitabilité avec des campagnes marketing stratégiques et mieux ciblées.
  • Création d’un Data hub pour les clients. Tous les systèmes qui utilisent le référentiel client utilise une seul et unique source et version de la donnée.
  • Mise en place d’une fondation solide de gestion de données et l’élimination des pratiques manuelles source d’erreurs.

Un projet MDM vise à urbaniser l’administration des données en différenciant bien ce qui est du ressort des applications opérationnelles et des données locales et au contraire ce qui revient au MDM et à la gestion des données de référence d’entreprise͘.  Modélisation, intégration et gouvernance sont les grands axes de réflexion des projets MDM͕ lesquels doivent se doter d’une méthodologie rigoureuse assortie des meilleures pratiques.

Les données « pré-traitées » ça vous parle ?

Dans le prochain épisode, nous aborderons les méthodes de la « Data science » qui permettent d’extraire les connaissances d’une entreprise à partir de ce type de données. Soyez au RDV !
Cet article vous a inspiré?
Business Intelligence, Data Governance, Data Mining and Data Integration, Data Quality Management

RETAIL : meilleures Data, meilleurs résultats // S3E1

La stratégie « Data-driven » passe d’abord par une qualité de données irréprochable. La non qualité des données influe directement sur la qualité du pilotage de l’activité. Les données du client inexactes et multiples altèrent la connaissance client et par conséquent la relation client est impactée. Les indicateurs de performance d’un point de vente doivent être fiabilisés car ils sont exploités pour l’évaluation des équipes ou certaines décisions comme la fermeture, la relocalisation, la rénovation ou encore l’estimation du chiffre d’affaires prévisionnel.

Qu’entend-on par « données de qualité » ? 

On peut parler de données de qualité lorsque les 4 caractéristiques suivantes sont réunies :

  • Des données complètes: vous disposez d’informations complètes sur vos référentiels et vos données transactionnelles.
  • Des données disponibles: vous accédez sans problème et rapidement aux données dont vous avez besoin.
  • Des données à jour: des données de qualité impliquent un nettoyage régulier, ainsi que la mise à jour de vos référentiels… faute de quoi vous prenez des décisions basées sur des facteurs devenus obsolètes.
  • Des données utilisables : erreurs de remplissage de champs, fautes d’orthographe, coquilles, chiffres erronés… Des données de qualité impliquent de résoudre ces problèmes et de bien encadrer la terminologie utilisée.

Pourquoi avoir de meilleures data ?

Malgré la tendance qui met de plus en plus en avant l’importance de disposer de données fiables pour prendre les bonnes décisions stratégiques et commerciales, de nombreuses entreprises hésitent encore à véritablement investir dans ce sens et pensent avant tout à réduire leurs coûts.

pexels-karolina-grabowska-4210850 (1)

Est-ce votre cas ?

Si oui, dans ce cas, vous passez à côté de données précieuses pour augmenter vos ventes, attirer plus de clients et mettre de côté les dépenses inutiles.

Il ne suffit pas de consulter ses statistiques de CA et fréquentation pour assurer un véritable pilotage par la data.

La qualité des données est indispensable et permet d’optimiser plusieurs axes :

  • La croissance du chiffre d’affaires
  • La réduction, voire la suppression des dépenses non-pertinentes
  • Un meilleur management du risque
  • Une meilleur relation client

Des données bien paramétrées et prêtes à être analysées selon vos objectifs vous permettront par exemple d’identifier en un clin d’œil vos tendances de vente par produits, de mieux comprendre ce qui fonctionne auprès de vos clients, mais aussi de réduire les coûts de campagnes selon leur ROI, d’anticiper vos lancements et de limiter les risques…

Comment faire pour avoir de meilleures données ??

Les dirigeants les mieux informés reconnaissent l’importance d’établir et d’institutionnaliser les pratiques exemplaires pour améliorer l’utilisation des données. L’objectif premier est d’élever le niveau de qualité de l’information. Cependant, des problèmes peuvent apparaître si les entreprises entament des efforts sporadiques pour les nettoyer et les corriger. L’absence de processus exhaustifs réservés à la gestion de la « qualité de données » entraîne la multiplication des interventions, et de fait l’augmentation des coûts. Pire encore, cela entrave la distribution d’informations cohérentes auprès des utilisateurs métiers.

Il convient alors d’adopter une approche pragmatique afin d’aligner les pratiques disparates en termes de maintien de la qualité des données. Cette démarche permet de mettre en place un programme à l’échelle d’une société afin de relever ces deux défis. Au-delà du fait de se rapprocher de partenaires commerciaux, de développer des cas d’usage et d’élaborer une analyse du retour sur investissement, il faut lister les procédures essentielles à l’amélioration de cette « qualité de données ».

Voici les cinq procédures les plus pertinentes :

  1. Documenter les exigences et définir des règles de mesure

 Dans la majorité des cas, accroître la qualité des données consiste à améliorer la pertinence des informations commerciales. Pour ce faire, les organisations doivent commencer par collecter les besoins. Cela implique une collaboration avec les utilisateurs métiers afin de comprendre leurs objectifs commerciaux. Une fois cette étape finalisée, ces informations combinées à des expériences partagées sur l’impact commercial des problèmes liés à la qualité de données peuvent être transformées en règles clés. Celles-ci mesurent la fraîcheur, l’exhaustivité et la pertinence des données.

 

  1. Évaluer les nouvelles données pour créer un référentiel adapté

 Un processus reproductible d’évaluation des données permet de compléter l’ensemble des règles de mesure, en scrutant les systèmes sources à la recherche d’anomalies potentielles dans les nouvelles données. Les outils de profilage permettent de balayer les valeurs, les colonnes et les relations dans et entre les sources de données. Mener cette opération fréquemment facilite l’identification des valeurs aberrantes, les erreurs et renforce leur intégrité. Ces outils permettent également de renseigner les administrateurs quant aux types de données, la structure des bases de données, et sur les interactions entre les entités. Les résultats peuvent être partagés avec les métiers pour aider à élaborer les règles de validation de la qualité des données en aval.

 

  1. Mettre en œuvre des processus de gestion sémantique des données

 Au fur et à mesure que le nombre et la variété des sources de données augmentent, il est nécessaire de limiter le risque que les utilisateurs finaux des différentes divisions d’une organisation interprètent mal ce surplus d’informations. L’on peut centraliser la gestion des métadonnées (dictionnaire de données) commercialement pertinentes et engager les utilisateurs et le Chief Data Officer (Directeur des données) à collaborer. Il s’agit d’établir des standards afin de réduire le nombre de cas où de mauvaises interprétations entraînent des problèmes d’exploitation des données. Les métadonnées et les librairies associées peuvent être accessibles depuis le Catalogue de données dans le but de comprendre les informations disponibles.

 

  1. Vérifier la validité des données en continu

Ensuite, il est recommandé de développer des services automatisés pour valider les données enregistrées, services qui adopteront les règles de qualités préalablement définies. Un déploiement stratégique facilite le partage des règles et des mécanismes de validation à travers l’ensemble des applications et dans tous les flux informatiques, afin d’assurer une inspection continue et la mesure de la qualité des données. Les résultats peuvent être intégrés à divers systèmes de rapports tels que des notifications et des alertes directes envoyées aux responsables de la gestion des données pour traiter les anomalies les plus graves et les failles de données hautement prioritaires, ainsi que des tableaux de bord figurant des agrégats pour les collaborateurs non-initiés.

 

  1. Endiguer les problèmes liés à la mauvaise qualité des données

 En ce sens, il est pertinent de développer une plateforme pour enregistrer, suivre et gérer les incidents liés à la « qualité de données ». Il ne suffit pas de comparer les règles mises en place. En soi, cet effort n’entraîne pas d’amélioration à moins qu’il y ait des processus standards pour évaluer et éliminer la source des erreurs. Un système de gestion des événements peut automatiser les tâches de reporting, mettre en avant les urgences, alerter les responsables, assigner les tâches et suivre les efforts d’assainissement.

pexels-andrew-neel-2682452

Bien menées, ces méthodes de « Data Governance » constituent l’épine dorsale d’un cadre proactif de gestion de la qualité des données, assorti de contrôles, de règles et de processus qui peuvent permettre à une organisation d’identifier et de corriger les erreurs avant qu’elles n’aient des conséquences commerciales négatives. En fin de compte, ces procédures permettront une meilleure exploitation des ressources au bénéfice des entreprises qui les déploient.

Vous assurer des données de qualité ne devrait jamais être considéré comme une dépense, mais bien comme un investissement… rentable !

 

Comment la data peut-elle être véritablement utile aux retailers ?

Dans le prochain épisode, nous nous penchons sur des cas d’usage pour illustrer « l’intérêt de la Donnée dans le monde du retail ». Stay tuned.

Business Intelligence, Data Governance, Data Marketing, Data Mining and Data Integration, L'entreprise, Machine Learning, Self-service Analytics

Quand trop de Data tue la Data // S2E4

Alors ne nous méprenons pas, chez DATANALYSIS nous sommes de vrais DATA enthousiastes et nous vous aiderons à créer les meilleures solutions pour votre organisation et votre équipe ! Aujourd’hui, nous allons parler d’un écueil en particulier auquel vous pouvez faire face à toute étape de votre projet d’analyse de données : la « surrogation » ! (Surprise, nous ne parlerons pas cette fois-ci de biais cognitif ou de visualisations trompeuses ; chaque chose en son temps…).  
La « surroga-quoi » ??

Il s’agit d’un anglicisme, introduit en 2012, dérivé du verbe « To surrogate » (qui signifie « se substituer ») et qui indique la tendance à remplacer la stratégie par…des indicateurs. Il s’agit d’une pratique malheureusement assez répandue et qui peut être évitée en mettant en œuvre les outils de la gouvernance et de l’approche DATA DRIVEN que nous décrivons dans nos différents articles.

N’hésitez pas à aller checker ça si vous n’êtes pas encore à jour !

Toujours un peu obscur ? Voyons ensemble un exemple de « surrogation » :

1. Le cas emblématique de la surrogation : Wells Fargo

Au milieu des années 2010, la grande banque américaine Wells Fargo a été prise dans un scandale majeur lorsque les autorités se sont rendu compte (et ont sanctionné) l’ouverture de 3,5 millions de comptes de dépôts et de cartes de crédits réalisées sans le consentement des clients. Cette pratique frauduleuse a été mise en œuvre par les salariés de la banque dans le cadre de la « stratégie de ventes croisées ».

Concrètement, un programme de rémunération incitative mise en place pour améliorer les ventes croisées (« 8 is great », l’objectif étant de vendre 8 produits de la banque à chaque client) a été à l’origine des dérives et des problèmes de la Wells Fargo et a été soutenu par le système de mesure mise en œuvre pour évaluer le déploiement de cette stratégie. Dès lors que la banque a décidé de suivre activement les chiffres quotidiens des ventes croisées, les salariés se sont efforcés logiquement de maximiser leur score personnel pour obtenir les meilleures primes possibles. Evidemment, comme l’histoire nous l’a appris : sans se soucier des règles à suivre.

Outre le coût exorbitant des sanctions, les remboursements réalisés auprès de clients lésés, cela a terni l’image de l’entreprise et sa réputation pendant de très longues années et la confiance n’a pu être rétablie qu’au prix de lourds efforts et d’importants changements.

Toutes les situations de « surrogation » ne résultent pas toujours sur des scénarios aussi graves et catastrophiques. Si vous attendez d’obtenir le nouveau superbe dashboard de vos consultants avant de définir votre politique commerciale, alors vous êtes dans ce cas !

2. Que faire pour ne pas tomber dans ce piège ?

Avant toute chose, ne jetez pas tous vos indicateurs à la poubelle. Ils sont utiles lorsqu’ils sont utilisés à bon escient ! Ce qui est important ici, c’est d’évoquer l’importance d’une stratégie d’entreprise clairement définie et assimilée par tous les membres de l’organisation ; et d’aligner la stratégie DATA avec cette stratégie d’entreprise.

Daniel Kahneman, Prix Nobel d’Economie, indique qu’il existe 3 conditions pour que la « surrogation » opère :
  1. La stratégie est définie en des termes abstraits
  2. L’indicateur de mesure de la stratégie est concret et visible (et incitatif comme dans l’exemple de la Wells Fargo)
  3. L’indicateur étant plus simple à comprendre que la stratégie globale, les membres de l’organisation préfèrent se référer au premier qu’au second.
Dès lors que l’on sait ce qui peut déclencher cette problématique, il suffit de travailler sur chacune de ces sources potentielles pour que le piège disparaisse.

En tout premier lieu, il s’agit de rendre la stratégie de l’entreprise lisible et claire pour toutes les parties prenantes. Il ne s’agit pas de multiplier uniquement les sessions d’informations et les ateliers de présentation mais d’associer au maximum les responsables de son exécution à sa définition.

Pour éviter que l’indicateur soit le graal à atteindre par les employés, il est également nécessaire de limiter le lien entre celui-ci et les incitations. En effet, un indicateur aussi bien construit et défini soit il n’est que le reflet imparfait d’une réalité. Le simple fait de le mettre en lumière peut ainsi le faire varier positivement ou négativement.

Une définition plus claire de la stratégie d’entreprise permettra alors de définir plusieurs critères de succès permettant l’élaboration d’une série d’objectifs qualitatifs et quantitatifs, sur différentes temporalités et qui permettront de mieux suivre l’exécution de la stratégie (et limitera automatiquement la mise en œuvre de méthode de contournement par les employés).

3. Pourquoi est-ce important dans le cadre de la mise en œuvre de ma plateforme d’analyse ?

On a pu voir dans les articles précédents que le succès d’un projet analytique ne découle pas uniquement des performances technologiques des solutions mises en œuvre mais s’appuie sur la capacité de tous les membres de l’organisation à les utiliser pleinement afin d’atteindre LES objectifs stratégiques de l’organisation.

Remplacer la stratégie par des indicateurs ne rendra pas la plateforme analytique caduque. En effet, celle-ci fournira les résultats des dits indicateurs. Mais celle-ci ne permettra pas la génération de valeur ajoutée et pourra parfois, comme le cas de la Wells Fargo l’a démontré, être la source de sérieuse déconvenue pour celle-ci.

Il est donc crucial de se doter des bonnes méthodologies de travail pour profiter pleinement du potentiel de ses données, pour développer les bonnes solutions techniques, et doter vos équipes des atouts et des clés pour qu’elles puissent les utiliser dans le long terme et dans le cadre de votre stratégie d’entreprise. Notre offre DATA GOVERNANCE est là pour vous accompagner dans toutes les étapes de vos projets d’analyse de données.

Dans le prochain épisode, nous conclurons cette série avec un livre blanc : « L’analytique en self-service, le graal d’une organisation DATA-DRIVEN».
Cet article vous a inspiré ?
Business Intelligence, Clients, Data Governance, Data Marketing, Data Mining and Data Integration, L'entreprise, Machine Learning, Self-service Analytics

Période incertaine : comment engager ses clients grâce aux données ? // S2E3

La façon dont vous engagez les clients commence par l’écoute. Il est fort probable qu’après une période aussi complexe que la pandémie mondiale, leurs attentes, leurs envies et leurs besoins aient évolué drastiquement. Investissez dans la compréhension des nouvelles réalités de vos clients, cela sera à coût sûr un investissement payant alors que l’on n’a jamais été aussi proches d’une réouverture plus complète de l’économie.

Et comment mieux les écouter que de développer des plateformes analytiques mettant à disposition de tous les opérateurs des données fiables et disponibles simplement (et évidemment dans le respect de la RGPD) ?

Avant la COVID-19, l’un des objectifs majeurs pour les organisations était de devenir « Customer-Centric » (organisé autour des besoins, des enjeux, des attentes et des contraintes du client). Cet objectif est devenu d’autant plus critique. Il est nécessaire de penser son entreprise en repensant les processus, et donc les flux de données et les outils d’analyses associées autour de vos clients, et non en silos ou en département.

La clé sera de personnaliser vos expériences et communication et d’associer pleinement les différents départements et services à cet effort de changement. Pour ce faire, nous vous donnons quelques éléments clés autour de deux axes sur lesquels orienter votre réflexion :

1. Comprenez parfaitement les besoins changeants des clients

L’objectif principal ici est de savoir si vous disposez de toutes les informations qui vous permettent de comprendre vos clients. Avez-vous accès aux données externes à votre entreprise ? Savez-vous les récupérer ? Savez-vous les croiser avec les données dont vous disposez déjà ? Un investissement dans de nouvelles sources d’informations pour votre organisation sera probablement nécessaire pour atteindre vos clients et tâter leur pouls sur toutes les plateformes où ils peuvent discuter de vos produits.

Une fois que les données sont obtenues, traitées, intégrées et exploitables (de manière éthique et respectueuse de la vie privée) avec celles issues de vos outils traditionnels, il est important de pouvoir les utiliser simplement grâce à votre plateforme self-service d’analyse. Votre objectif sera d’identifier et comprendre les nouveaux besoins de vos clients : est-ce que vos segmentations ont bougé ? Est-ce que les comportements d’achats ont évolué (fréquence, montant, panier, remise, produits etc.) ? Comment est-ce que j’adapte mes opérations pour répondre à mon nouvel environnement ?

Cela vous donnera les moyens d’offrir une expérience optimale et personnalisée à vos clients et reconstruire un nouveau lien avec eux :
  • Capturez les besoins des clients grâce à l’acquisition de données extérieures à votre organisation (réseau Sociaux, sites de notations etc.). Intégrez ces nouvelles données à vos analyses marketing pour déterminer les nouvelles attentes de vos clients
  • Faites évoluer la stratégie de données en fonction des nouvelles exigences en matière de données pour garantir une expérience client optimale
  • Mettre en place un conseil consultatif sur l’utilisation éthique et des lignes directrices pour régir la santé et l’utilisation d’autres données sensibles
  • Adapter les propositions de valeur et les offres pour répondre à la demande du marché à court terme
  • Etablissez à nouveau la confiance grâce à des expériences personnalisées

2. Exploitez tout le potentiel de votre entreprise

Vous avez à disposition toutes les données vous permettant de comprendre les nouvelles attentes de vos clients, c’est très bien ! Mais il ne faut pas oublier d’organiser vos méthodes de travail et vos outils pour arriver à exploiter parfaitement ce nouveau gisement d’information.

Nous l’avons vu dans la série précédente sur la Data Governance, la clé pour qu’une solution d’analyse de données soit réellement efficiente, vous offre un véritable retour sur investissement, et permette à votre organisation d’exploiter son plein potentiel est de prévoir une organisation adaptée :

  1. Adéquation de votre stratégie DATA et votre stratégie d’entreprise
  2. Rôles et processus de tous les acteurs interagissant avec les données
  3. Environnement de Data Governance : DATA Catalogue, DATA Lineage, Compliance
  4. Solution analytique : Traitement des données, stockage, analyse visuelle, Machine Learning et IA
  5. Formation et établissement d’une DATA Communauté
Investir dans la mise en œuvre d’une vraie politique de Data Governance est la seule solution pour réellement engager ses clients dans le long terme. En clair et spécifiquement à cet enjeu :
  • Redéfinissez les processus métier pour qu’ils soient centrés sur le client
  • Créez une source unique de vérité client pour mettre toutes les équipes sur la même page en agrégeant plusieurs sources de données
  • Auditez systématiquement les moments clients en fonction du « travail à faire » pour identifier les points faibles et les opportunités de différenciation
  • Développer des processus et des composants réutilisables (ensembles de données, API) pour accélérer le développement d’applications grâce à une réutilisation maximale
  • Tirez parti des données de cas de service pour identifier les améliorations et les investissements les plus prioritaires

Comme souvent, on en revient toujours à une conclusion similaire. La clé pour pouvoir exploiter parfaitement les données et engager ses clients est à la fois dans l’établissement des capacités (construire la plateforme analytique et l’alimenter en données) et dans le développement des méthodes de travail (stratégie, rôles, processus, et formation) qui permettront de les exploiter et prendre les bonnes décisions.

Se concentrer sur un des aspects du problème et oublier le second est le meilleur moyen de ne pas être dans les « starting blocks » pour la réouverture prochaine et laisser ces concurrents prendre une avance non négligeable !

« Quand trop de DATA tue la DATA ? Quels sont les écueils à éviter ? ».

Rendez-vous dans notre prochain épisode !

Cet article vous a inspiré ?
Business Intelligence, Data Governance, Data Marketing, Data Mining and Data Integration, L'entreprise, Machine Learning, Self-service Analytics

Organisation Data-Driven : Quoi ? Comment ? // S2E2

Lors du premier épisode de cette mini-série, nous avons vu les avantages concurrentiels des organisations DATA DRIVEN dans une période complexe et incertaine comme celle que nous vivons actuellement.

Mais, qu’est ce qui caractérise une entreprise DATA-DRIVEN ?

Après avoir défini ce terme et nous allons vous partager quelques questions que vous pouvez vous poser pour savoir si votre organisation/votre équipe profitent pleinement du nouveau pétrole de l’économie.

1. Etre Data-Driven : kezako ?

Déf.

Être DATA DRIVEN cela veut dire qu’au sein d’une organisation les données sont utilisées ACTIVEMENT, par tous, tous les jours et pour répondre à la majorité des questions opérationnelles et stratégiques qui peuvent être posées pour découvrir de nouvelles informations et prendre des décisions. Cela implique donc d’avoir les outils, les compétences, les processus et les rôles qui permettent à tous de naviguer dans les données sans idées préconçues pour générer de nouvelles informations éclairées.

Eléments clés d’une organisation DATA DRIVEN :

  1. Ceux qui ont besoin d’utiliser les données dans leur tâche pour prendre de meilleures décisions peuvent le faire par eux-mêmes en ayant accès aux bonnes données et aux bons outils
  2. Les outils mis à disposition doivent être suffisamment simples et ergonomiques pour permettre des usages adaptés au rôle, profil et niveau de compétences des opérateurs métiers
  3. C’est par l’exploration et l’analyse des données que l’on identifie les bonnes informations et les bonnes décisions à prendre, même si cela peut être parfois contre-intuitif
  4. Les informations générées peuvent être communiquées rapidement et simplement aux managements et aux autres parties prenantes
  5. L’organisation des équipes permet un fonctionnement agile et l’utilisation quotidienne des outils analytiques
  6. De nouvelles données peuvent être rendues simplement accessibles pour valider leur intérêt, réaliser des analyses et des études, en attendant qu’elles soient intégrées à une plateforme transverse sur leur intérêt est confirmé.

Ce qu'une organisation DATA DRIVEN n'est pas :

Ce type de fonctionnement s’oppose aux organisations qui travaillent de manière empirique : j’ai une hypothèse sur mon activité, mon environnement, mes clients et j’espère trouver une réponse dans les rapports qui me sont fournis de façon hebdomadaire et mensuelle. Le cas échéant, je peux demander à une équipe dédiée de créer un nouveau reporting pour tenter d’affirmer ou d’infirmer mes hypothèses.

Ingrédients d'une organisation empirique :

  1. L’organisation des équipes est très verticale. L’accès aux données (souvent limité par les compétences techniques nécessaires) se concentre au niveau d’un seul service ; centre de compétence BI, DSI etc.
  2. Les opérateurs métiers doivent donc définir des hypothèses avant de soumettre une demande de création d’un rapport adapté pour vérifier la validité de celles-ci ; et attendre la construction de la solution pour commencer à prendre des décisions
  3. Les équipes analytiques recevant des demandes de toutes parts, les temps de réponses sont souvent très longs et les problématiques métiers deviennent obsolètes au moment où les développements sont achevés
  4. Les équipes opérationnelles développent des solutions de contournement pour trouver des réponses à leur problématiques (souvent par l’entremise de rapports manuellement générés sous Excel)
  5. La mise à disposition de nouvelles données pour répondre aux questions sur de nouveaux périmètres demande de passer par un processus lent, lourd et complexe de validation et de développement avant d’être enfin effectif.

2. Votre organisation est-elle DATA-DRIVEN ?

Votre équipe / votre entreprise utilise-t-elle les données de la manière la plus efficiente ? Rassurez-vous, cela ne nécessite pas (obligatoirement) de forts investissements dans de nouvelles technologies. Il s’agit d’avoir une organisation adaptée, des équipes aculturées aux données et des processus afin de prendre des décisions éclairées dès qu’une information pertinente est générée.

Et sur le terrain ?

1.Vous menez vos réunions avec vos équipes, votre management en argumentant vos décisions majoritairement par des exemples issus de votre entourage proche ou d’informations récoltées dans des publications extérieures à votre organisation?

  • Votre approche est donc plutôt empirique. En effet, si votre cousine est fan d’un certains types de produits ou que vous avez vu un article (même d’une source de référence) décrivant le comportement des millénials dans certaines circonstances, cela ne veut pas dire qu’il s’agit d’éléments valides au regard de l’activité de votre organisation. Il est même possible que parfois ce type d’exemple ou d’anecdote ne soit pas du tout représentatif de votre marché, de votre public ou de votre environnement.

2. Vos services marketing, financiers, ventes, logistiques ne communiquent pas les données relatives à leurs activités entre eux ?

  • Malheureusement vous êtes face à des silos organisationnels et cela est clairement un des signes attestant que votre organisation n’est pas DATA DRIVEN. Être DATA DRIVEN cela implique (dans le respect de certaines règles d’accès et de sécurité bien entendu) de partager les informations entre les services pour avoir toutes les cartes en main et prendre ainsi les meilleures décisions possibles.

3. Une majorité de vos employés sont capables d’accéder aux bonnes données et de faire les analyses qui sont nécessaires à leur travail ; par exemple :

  • Le responsable d’un rayon saura à tout moment explorer les données pour vérifier quels sont les produits les mieux vendus pour chaque catégorie dont il a la charge et ainsi réorganiser son espace commercial
  • Un directeur de magasin pourra déclencher une promotion pour augmenter le trafic dans son magasin en accédant simplement à une analyse des horaires de ventes et des meilleures actions commerciales à mettre en œuvre pour augmenter la fréquence d’achat

Si vous êtes dans cette situation ou proche de celle-ci, bravo ! Votre organisation est probablement DATA DRIVEN. Vos équipes à tous les niveaux de l’organisation sont capables de travailler efficacement avec les données nécessaires à la prise de décision.

Ainsi, on dit qu’une organisation est DATA DRIVEN si elle s’est dotée des outils, des processus, des rôles qui lui permettent de prendre les bonnes décisions, rapidement, sans à priori ou hypothèses préconstruites. Ces décisions s’appuient sur l’environnement réel (contraintes, partenaires, clients, etc.) de l’organisation et permettent donc un meilleur retour sur investissement comparativement à des méthodologies empiriques.

L’épisode 3 portera sur une notion d’engagement, et pas des moindres :

« Comment engager ses clients grâce aux données en des temps incertains ? »

Cet article vous a inspiré ?
Business Intelligence, Data Governance, Data Marketing, Data Mining and Data Integration, L'entreprise, Machine Learning

Etre Data-Driven à l’ère de l’incertitude // S2E1

Les entreprises font face à plus d’incertitude aujourd’hui qu’elles ne le font depuis des décennies. Prendre des décisions pendant une pandémie mondiale semble risqué et inconfortable. Tout le monde a une opinion sur ce qu’il faut faire ensuite. Mais au final, il ne s’agit que d’opinions et d’hypothèses et non de faits éclairés pouvant aider à naviguer dans ces temps difficiles et préparer le « monde d’après ».

Comment pouvez-vous prendre des décisions « sans regret » aujourd’hui dans ce cas ?

Il y a évidemment différentes stratégies, adaptées aux situations, métiers de chaque organisation et à leur contexte. Toutefois, au-delà de l’exécution et du chemin précis à prendre, il est clair qu’un élément central permettra de différencier ceux qui s’en sortirons mieux que leurs compétiteurs : LA DONNEE !

Dans cette série d’articles, nous allons approfondir ce qui rend les organisations Data-Driven mieux équipées pour survivre à la crise actuelle et mieux armées pour repartir et prospérer dans le « monde d’après ».

Episode 1 : L’organisation Data-Driven et la gestion du risque et de l’incertitude

Le principe est clair : les données nous donnent une idée claire de l’environnement de notre organisation (passée et future – grâce à l’analyse prédictive) et nous aide à déployer stratégiquement notre temps et nos ressources le plus efficacement possible pour faire le meilleur travail possible dans les mois à venir. Les organisations qui mettent en place des plateformes performantes d’analyse de données (incluant les aspects organisationnels et culturels comme on l’a vu dans la série précédente sur la Data Governance) obtiennent deux avantages compétitifs majeurs.

• Les organisations Data - Driven sont moins dans l’incertitude

L’incertitude pour toute entreprise coûte cher. C’est pourquoi il est essentiel de pouvoir gérer ce niveau d’incertitude pour la croissance et les gains économiques de toute entreprise. L’analyse des données joue un rôle important dans la réduction de cette incertitude en reconfigurant l’inconnu en probabilités petites, contraintes et bien articulées. Ces informations peuvent aider à dissiper certaines ambiguïtés auxquelles de nombreuses entreprises sont confrontées et leur permettent d’optimiser l’allocation de leurs ressources, d’appliquer leurs efforts plus efficacement et de mieux gérer ce qui s’en vient.

• Les organisations Data - Driven sont capables de s’adapter plus rapidement

Avec la mise en œuvre d’une plateforme analytique en phase avec la stratégie d’entreprise, des méthodes de travail adaptées de chaque acteur de la chaîne de décision, on obtient donc une vue précise de notre environnement.

Les données qui seront transformées en information servent de signaux pour atténuer les risques d’une situation en constante évolution. L’organisation, les processus et les rôles correctement définis permettent que les décisions adéquates soient prises rapidement et que les actions qui en découlent soient exécutées rapidement et conformément aux évolutions de l’environnement de l’organisation. Plus de « doigt mouillé», les décisions sont éclairées par des faits validés par les données.

Concrètement, les données aideront votre organisation à améliorer :

Prise de recul

LES AVANTAGES

• Les stratégies marketing: découvrez les stratégies de marketing qui permettent de réduire les coûts et de faire croître l'entreprise dans son ensemble.
• Les produits: découvrez comment l'entreprise peut ajouter de la valeur à ses produits.
• La connaissance de ses clients: découvrez comment l'entreprise peut aider à développer sa marque et à améliorer les perceptions de ses clients.
• La croissance: découvrez comment l'entreprise peut pénétrer des marchés inexploités ou fournir à l'entreprise un degré de certitude plus élevé.
• Les politiques de tarification / coûts: découvrez comment l'entreprise peut développer de meilleures stratégies de tarification et optimiser ses structures de coûts en découvrant les coûts inutiles de l'entreprise.

Dans le prochain épisode, nous nous concentrerons sur l’un de ces avantages en évoquant la question suivante:

« Etre DATA DRIVEN, qu’est-ce que cela signifie réellement? »

Cet article vous a inspiré ?
Business Intelligence

Talk on The Era of Smart Data

2nd of May , The team participated in a talk on the era of smart data organised by the MIOD Fellows Networking Event. Great night exchanging ideas on data analytics , the future of BI and the tools needed to move forward with data strategy.

The Team ready to kick off the talks on data!