Dans nos projets d’analyse de données, les erreurs mathématiques peuvent arriver dès lors qu’un champ calculé est créé pour générer des informations supplémentaires à partir de notre jeu de données initial. Ce type d’erreur peut être retrouvé par exemple lorsque :
Il s’agit évidemment d’une infime partie des types d’opérations où des erreurs peuvent se glisser. Mais au regard de notre expérience, ce sont les causes principales de problème que nous rencontrons.
Et, dans chacun de ces cas, il ne faut pas être un ingénieur ou scientifique de génie pour les corriger. Un peu d’attention et pas mal de rigueur sont nécessaires !
Dans cet article, nous n’allons pas trop nous attarder sur cette erreur fréquente. En effet, il existe un nombre important d’articles et d’anecdotes qui illustrent parfaitement et en détail ce type de problématique (dont nous avons également parlé dans l’article précédent).
L’exemple le plus fameux, et coûteux, est le crash de la sonde « Mars Orbiter ». Si vous voulez en savoir plus alors cela sera par ici : Mars Climate Orbiter – Wikipedia
Vous pouvez arguer qu’aucun d’entre nous ne fait partie de la NASA et doit poser une sonde sur une planète lointaine et donc ne pas être concerné. Et bien, vous pouvez à votre mesure, vous retrouver nez à nez avec ce type d’erreur lorsque vous manipulez des données temporelles (heures, jours, secondes, minutes, années), financières (différentes devises), ou que vous gériez des stocks (unités, kilos, palettes, barres etc.).
Nous agrégeons des données lorsque nous regroupons des enregistrements qui ont un attribut en commun. Il y a toutes sortes de regroupements de ce genre que nous traitons dans notre monde dès lors que nous pouvons établir des liens hiérarchiques ; le temps (jour, semaine, mois, années), la géographie (villes, région, pays), les organisations (employés, équipes, sociétés) etc.
Les agrégations sont un outil puissant pour appréhender le monde, mais attention, elles comportent plusieurs facteurs de risque :
Le résumé statistique est un exemple typique de ce que peuvent masquer des agrégats. Dans cet exemple les quatre jeux de données ont exactement les mêmes sommes, moyennes et déviation standards sur les deux coordonnées (X,Y). Lorsque l’on représente chacun des points sur des courbes, il est aisé de constater que les 4 histoires sont significativement différentes.
Dès lors que des données sont agrégées, nous essayons de résumer une situation. Il faut toujours se rappeler que ce résumé masque les détails et le contexte qui l’expliquent. Alors soyez prudent lorsque, lors d’une discussion, vos interlocuteurs ne parlent que de valeurs moyenne, de sommes ou de médiane sans entrer dans le détail de ce qui a pu engendrer ce scénario précis.
Prenons par exemple un jeu de données dans lequel nous observons pour une compagnie aérienne le nombre d’impacts d’oiseaux sur des avions.
Notre objectif est de déterminer le (ou les) mois de l’année où le plus d’incidents ont été relevés. Cela donne :
La réponse à notre question était donc le mois d’Août si nous excluons les données de l’année pour laquelle nous n’avions pas tous les enregistrements.
Dernier exemple de problématiques liées aux agrégations que nous allons découvrir dans cet article. Il s’agit d’une des erreurs « favorites » de l’auteur de cet article. D’aucun pourrait même parler de spécialité !
Elle intervient lorsqu’il est nécessaire de compter les individus distincts dans une population donnée. Mettons que nous regardons notre base client et cherchons à savoir combien d’individus uniques sont présents dans celle-ci.
Le comptage des id distincts pour l’ensemble de la société nous donne un décompte de nos clients uniques :
Mais si l’on regarde par ligne de produit et affichons une somme sans y prêter attention :
Nous trouvons 7 clients de plus !
Cela arrive simplement car il existe dans la clientèle de la société étudiée des clients qui prennent à la fois des prestations ET des licences, et qui finissent par être comptés deux fois dans le total !
Il s’agit d’un problème ayant des solutions simples dans tous les logiciels modernes de datavisualisation et de BI mais celui-ci à tendance à se cacher au détour d’une série de calculs et d’agrégations, causant des écarts parfois surprenants en bout de chaîne.
Nous allons illustrer ce point avec un exemple sorti de l’un des dashboards que nous avons fait pour un de nos clients. Avec toute notre expertise, il nous arrive aussi de sauter à pieds joints dans ce type d’erreurs :
Et oui, il s’agit d’un taux d’occupation qui excède « légèrement » les 100% !
Comment est-ce possible ? Un simple oubli !
La somme des divisions n’est pas égale à la division des sommes…
En effet, dans ce cas précis, nous avions un jeu de données similaire à celui ci-dessous :
Est-ce que le taux d’occupation est égal à :
Cela nous donne un total de 30 % + 71 % + 100 % + 50 % + 92 % +70 % soit 414 %.
Et c’est exactement l’erreur que nous avons faite sur un jeu de données encore plus vaste…
Remarque : la moyenne des taux d’occupation individuels serait également fausse.
En résumé, dès lors que l’on manipule un ratio, il s’agit de diviser le total des valeurs du numérateur et du dénominateur pour éviter ce type de soucis.
Il s’agit dans ce cas précis d’un seul exemple d’erreur liée au ratio. Des mentions honorables peuvent être attribuées au traitement des valeurs NULL dans un calcul, ou à la comparaison de ratios qui ne sont pas calculés avec les mêmes dénominateurs.
Dans le prochain article, nous allons explorer le 4ème type d’obstacle que nous pouvons rencontrer lorsque nous utilisons les données pour éclairer le monde qui nous entoure :
Les dérapages statistiques. (Spoilers : « There are lies, damned lies and statistics » B.Disraeli)
Cet article est inspiré fortement par le livre ” Avoiding Data pitfalls – How to steer clear of common blunders when working with Data and presenting Analysis and visualisation” écrit par Ben Jones, Founder and CEO de Data Litercy, édition WILEY. Nous vous recommandons cette excellente lecture!
Pour retrouver l’intégralité des sujets qui seront abordés au cours de cette série par ici : https://www.datanalysis.re/blog/business-intelligence/data-les-7-pieges-a-eviter-intro/
Dans le monde de la donnée, il s’agit d’un sujet central et critique. En effet, nous avons été familiarisés avec le processus de transformation de la donnée, en informations, en connaissance et en élément de sagesse :
Ici le problème trouve sa source dans la manière dont nous considérons notre point de départ : les données ! En effet, l’utilisation de celle-ci et sa transformation au cours des étapes suivantes relèvent de procédés et processus conscients et maîtrisés :
==>Je nettoie ma donnée, la traite dans un ETL / ELT, la stocke, la visualise, communique mon résultat et le partage etc. Cette maîtrise nous donne le contrôle sur la qualité des étapes. Toutefois, on aura tendance à se lancer dans ce travail de transformation de notre ressource primaire en omettant un point crucial, source de notre premier obstacle :
LA DONNEE N’EST PAS UNE REPRESENTATION EXACTE DU MONDE REEL !
En effet, il est excessivement simple de travailler avec des données en pensant aux données comme étant la réalité elle-même et pas comme des données collectées à propos de la réalité. Cette nuance est primordiale :
Regardons ensemble ce dashboard présentant l’ensemble des impacts de météorites sur la Terre entre -2500 et 2012. Pouvez vous identifiez ce qu’il y a d’étranges ici ?
Les météorites semblent avoir évité soigneusement certaines parties de la planète, une large part de l’Amérique du Sud, de l’Afrique, de la Russie, du Groenland etc. Et si l’on se concentre sur le graphique montrant le nombre de météorites par années, que celles-ci ont eu tendance à tomber plutôt dans les 50 dernières années (et presque pas sur l’ensemble de la période couvrant -2055 à 1975).
Est-ce qu’il s’agit bien de la réalité ? Ou plutôt de défauts dans la manière dont les données ont été collectées
Parfois, la cause de cet écart entre la donnée et la réalité peut être expliqué par un défaut du matériel de collecte. Malheureusement, tout ce qui est fabriqué par un être humain en ce bas monde est susceptible d’être défaillant. Cela vaut pour les capteurs et les instruments de mesure évidemment.
Que s’est-il passé les 28 et 29 avril 2014 sur ce pont ? Il semblerait qu’il y ait un énorme pic de traversée du pont de Fremont par des vélos mais uniquement dans un seul sens (courbe bleue).
On pourrait penser qu’il s’agissait d’une magnifique journée d’été et que tout le monde est passé sur le pont en même temps ? D’une course de vélos n’empruntant celui-ci que dans un sens ? Que tous les pneus de toutes les personnes ayant traversé le pont à l’aller ont crevé avant le retour ?
Plus prosaïquement, il s’avère que le compteur bleu avait un défaut ces jours précis et ne comptait plus correctement les traversées du pont. Un simple changement de batterie et du capteur et le problème a été résolu.
Maintenant, posez vous la question du nombre de fois où vous avez pu être induit en erreur par des données issues d’un capteur ou d’une mesure défaillante sans que cela n’ait été perçu ?
Et oui, nos propres biais humains ont un effet important sur les valeurs que nous enregistrons lors de la collecte d’informations. Nous avons par exemple tendance à arrondir les résultats des mesures :
Si l’on s’en fit à ses données, le changement des couches se fait plus régulièrement toutes les 10 minutes (0, 10, 20, 30, 40, 50) et parfois sur certains quarts d’heure (15, 45). Cela serait assez incroyable n’est-ce pas ?
Il s’agit bien d’un récit incroyable. En effet, il faut se pencher ici sur la manière dont les données ont été collectées. En tant qu’être humain, nous avons cette tendance à arrondir les informations lorsque nous les enregistrons, notamment lorsque nous regardons une montre ou une horloge : pourquoi ne pas indiquer 1:05 lorsqu’il est 1 :04 ? ou encore plus simple 1:00 car c’est plus simple encore ?
On retrouvera ce type de simplification humaine dans toutes les collectes de mesures : poids, tailles, etc.
Dernier exemple que nous souhaitons mettre en avant ici, et ce que l’on appelle l’effet « Cygne Noir ». Si nous pensons que les données dont nous disposons sont une représentation exacte du monde qui nous entoure et que nous pouvons en sortir des affirmations à graver dans le marbre ; alors nous nous trompons fondamentalement sur ce qu’est une donnée (cf. précédemment).
Le meilleur usage des données est d’apprendre ce qui n’est pas vrai à partir d’une idée préconçue et de nous guider dans les questions que nous devons nous poser pour en apprendre plus ?
Mais revenons à notre cygne noir :
Avant la découverte de l’Australie, toutes les observations de cygne jamais faite pouvaient conforter les européens que tous les cygnes étaient blancs, à tort ! En 1697, l’observation d’un cygne noir a remis intégralement en question cette préconception commune.
Et le lien avec les données ? De la même manière que l’on aura tendance à croire qu’une observation répétée est une vérité générale ; à tort ; on peut être amener à inférer que ce que nous voyons dans les données que nous manipulons peut s’appliquer de manière générale au monde qui nous entoure et à toute époque. C’est une erreur fondamentale dans l’appréciation des données.
Il suffit pour cela d’une légère gymnastique mentale et d’un peu de curiosité :
Dans le prochain article, nous allons explorer le 2ème type d’obstacle que nous pouvons rencontrer lorsque nous utilisons les données pour éclairer le monde qui nous entoure : Les Erreurs Techniques
Pour retrouver l’intégralité des sujets qui seront abordés au cours de cette série par ici : https://www.datanalysis.re/blog/business-intelligence/data-les-7-pieges-a-eviter-ep-1-7/