Les fraîches infos de la Data

Business Intelligence, Company, Data Governance, Data Marketing, Data Mining and Data Integration, Data Quality Management, Data Regulations, Data visualisation, Data Warehouse, Machine Learning, Technology

SQL basique: quézako ?

Pendant très longtemps réservé aux personnes averties et techniques du service informatique, le SQL n’était pas à la portée de n’importe quelle entité ou service d’une société. Rôle exclusivement réservé au service IT de l’entreprise auparavant. Désormais, la vulgarisation de « l’informatique » a permis à de nombreux services d’accéder aux données de leur entreprises via le SQL pour interroger leurs bases de données tels que les départements marketing, la comptabilité, le contrôle de gestion, les ressources humaines et bien d’autres encore !

Vous êtes une entreprise spécialiste du commerce électronique, de la santé, du retail ou tout simplement une PME / PMI? Vous avez un ensemble de données stockées dans une base de données?

Il est indispensable de connaître les éléments basiques du langage de requêtes structurées (SQL) pour vous permettre d’avoir rapidement des réponses à vos interrogations.

DEFINITION

Le SQL, ou Structured Query Language (Langage de Requête Structurée), est un langage de programmation spécialement conçu pour la gestion et la manipulation de bases de données relationnelles.

Il offre une interface standardisée permettant aux utilisateurs de communiquer avec les bases de données, d’effectuer des opérations telles que l’insertion, la mise à jour, la suppression et la récupération de données de manière efficace.

LES BASES DU SQL

Rappelons que le SQL n’est rien d’autre qu’un moyen de lire le contenu d’une base de données relationnelle pour remonter les informations dont un utilisateur a besoin pour répondre à un besoin.

STRUCTURATION DES DONNEES

Le SQL se base sur le modèle relationnel, qui organise les données sous forme de tables. Chaque table est composée de colonnes (champs) représentant des attributs spécifiques, et de lignes contenant les enregistrements

La structure des tables :

Dans le monde du SQL, la structure des tables est cruciale. Chaque table est définie par des colonnes, où chaque colonne représente un attribut particulier des données que vous stockez. Par exemple, une table « employés » pourrait avoir des colonnes telles que « nom« , « prénom« , « âge« , etc. Ces tables sont reliées par des clés, qui peuvent être des identifiants uniques pour chaque enregistrement, facilitant ainsi les relations entre différentes tables.

Les principales opérations (ou commandes / requêtes SQL basiques)

SELECT : Utilisé pour extraire des données d’une ou plusieurs tables. La clause SELECT permet de spécifier les colonnes à récupérer, les conditions de filtrage et l’ordre de tri. Cette clause est l’une des plus fondamentale du SQL. La clause WHERE, souvent utilisée avec SELECT, permet de filtrer les résultats en fonction de conditions spécifiques. Par exemple, vous pourriez vouloir récupérer uniquement les employés dont l’âge est supérieur à 30 ans, ou comme dans l’exemple ci-dessous uniquement les employés du service des ventes.

SELECT nom, prenom FROM employes WHERE service = Ventes;

INSERT : Permet d’ajouter de nouvelles lignes dans une table

INSERT INTO clients (nom, prenom, email) VALUES (‘Doe’, ‘John’, ‘john.doe@email.com);

UPDATE : Permet d’ajouter de nouvelles lignes dans une table

UPDATE produits SET prix = prix * 1.1 WHERE categorie = ‘Electronique‘;

DELETE : Permet de supprimer des lignes d’une table en fonction de certaines conditions

DELETE FROM commandes WHERE date_commande < 2023-01-01;

Filtrage et tri

Pour filtrer les résultats, le SQL utilise la clause WHERE, permettant de spécifier des conditions pour sélectionner les données. De plus, la clause ORDER BY permet de trier les résultats selon une ou plusieurs colonnes.

Le filtrage et le tri sont des opérations essentielles dans le langage SQL, permettant de récupérer des données spécifiques et de les organiser de manière significative. Explorons ces concepts avec des exemples pratiques

Filtrage avec la Clause WHERE

La clause WHERE est utilisée pour filtrer les résultats d’une requête en spécifiant des conditions. Cela permet de sélectionner uniquement les données qui répondent à ces critères.

–Sélectionner les employés avant un salaire supérieur à 50000

SELECT nom, prenom, salaire

FROM employes

WHERE salaire > 50000;

Dans cet exemple, seuls les employés dont le salaire est supérieur à 50000 seront inclus dans les résultats.

Filtrage avec la Clause ORDER BY

La clause ORDER BY permet de trier les résultats d’une requête en fonction d’une ou plusieurs colonnes. Vous pouvez spécifier l’ordre de tri (croissant ou décroissant)

–Sélectionner les clients et trier par ordre alphabétique du nom

SELECT nom, prenom, email

FROM clients

ORDER BY nom ASC;

Dans cet exemple, les résultats seront triés par ordre alphabétique croissant du nom du client

Filtrage et Tri peuvent être combiné également, à savoir la combinaison entre la clause WHERE et la clause ORDER BY pour filtrer les résultats en même temps

–Sélectionner les produits de la catégorie ‘Electronique’ et trier par prix décroissant

SELECT nom_produit, prix

FROM produits

WHERE categorie = ‘Electronique’

ORDER BY prix DESC;

Il existe d’autres filtrages et tri avec des opérateurs mais cela devient du SQL qui n’est plus basique mais devient pour un public plus averti.

En comprenant ces concepts de filtrage et de tri, vous serez en mesure d’extraire des données spécifiques de vos bases de données SQL de manière ciblée et organisée.

Les jointures

Les jointures sont essentielles pour combiner des données provenant de plusieurs tables.

Les types courants de jointures incluent INNER JOIN, LEFT JOIN, RIGHT JOIN et FULL JOIN, chacun offrant des méthodes spécifiques pour associer des lignes entre différentes tables.

Exemple de jointure simple :

SELECT client.nom, commandes.date

FROM clients

INNER JOIN commandes ON clients.id_client = commandes.id_client;

Les types de jointures :

INNER JOIN : Renvoie les lignes lorsque la condition de jointure est vraie dans les deux tables.

LEFT JOIN (ou LEFT OUTER JOIN) : Renvoie toutes les lignes de la table de gauche et les lignes correspondantes de la table de droite.

RIGHT JOIN (ou RIGHT OUTER JOIN) : L’inverse du LEFT JOIN.

FULL JOIN (ou FULL OUTER JOIN) : Renvoie toutes les lignes lorsque la condition de jointure est vraie dans l’une des deux tables.

Contraintes pour l’intégrité des données et Index pour optimiser les performances

Les contraintes jouent un rôle crucial dans la garantie de l’intégrité des données. Les clés primaires assurent que chaque enregistrement dans une table est unique, tandis que les clés étrangères établissent des liens entre différentes tables. Les contraintes d’unicité garantissent qu’aucune valeur dupliquée n’est autorisée dans une colonne spécifiée

Les index sont des structures de données qui améliorent les performances des requêtes en accélérant la recherche de données. En créant un index sur une colonne, vous facilitez la recherche, mais il est essentiel de les utiliser judicieusement, car ils peuvent également augmenter la taille de la base de données

Conclusion

Le SQL est un outil puissant et universel pour travailler avec des bases de données relationnelles. Comprendre ses bases permet aux développeurs et aux analystes de données d’interagir de manière efficace avec les systèmes de gestion de bases de données, facilitant ainsi la manipulation et la récupération d’informations cruciales. Que ce soit pour des tâches simples ou des opérations plus complexes, le SQL reste un incontournable dans le domaine de la gestion de données

Il offre une panoplie d’outils pour interagir avec les bases de données relationnelles de manière puissante et flexible. En comprenant ces concepts de base, vous serez mieux équipé pour manipuler efficacement les données, créer des rapports personnalisés et répondre à des questions complexes à partir de vastes ensembles de données. Que vous soyez un développeur, un analyste de données ou un administrateur de base de données, la maîtrise du SQL est un atout inestimable dans le monde de la gestion de données.

Cet article vous a inspiré ?
Business Intelligence, Company, Data Governance, Data Marketing, Data Mining and Data Integration, Data Quality Management, Data Regulations, Data visualisation, Data Warehouse, L'entreprise, Machine Learning, Self-service Analytics, Technology

Entrepôts de Données vs Lacs de Données : plongée comparative dans le monde de la Technologie

Dans le monde de la technologie, en constante évolution, deux termes font des vagues :

les Entrepôts de Données (Data Warehouses) et les Lacs de Données (Data Lakes).

Tous deux sont des outils puissants pour le stockage et l’analyse des données, mais ils servent à des fins différentes et possèdent des forces et faiblesses uniques. Plongeons dans le monde des données pour explorer ces deux géants technologiques.

Les Entrepôts de Données existent depuis un certain temps, offrant un moyen structuré et organisé de stocker des données. Ils sont comme une bibliothèque bien organisée, où chaque livre (donnée) a sa place. Les avancées récentes les ont rendus encore plus efficaces. Par exemple, la convergence des lacs de données et des entrepôts de données a mené à une approche plus unifiée du stockage et de l’analyse des données. Cela signifie moins de mouvements de données et plus d’efficacité – un double avantage !

De plus, l’intégration de modèles d’apprentissage automatique et de capacités d’IA a automatisé l’analyse des données, fournissant des insights plus avancés. Imaginez avoir un bibliothécaire personnel qui non seulement sait où chaque livre se trouve mais peut aussi prédire quel livre vous aurez besoin ensuite !

Cependant, chaque rose a ses épines. Les entrepôts de données peuvent être complexes et coûteux à mettre en place et à maintenir. Ils peuvent également avoir du mal avec les données non structurées ou le traitement des données en temps réel.

Mais ils brillent lorsqu’il est nécessaire d’avoir des données structurées, historiques pour le reporting et l’analyse, ou lorsque les données de différentes sources doivent être intégrées et cohérentes.

D’autre part, les lacs de données sont comme un vaste océan de données brutes, non structurées. Ils sont flexibles et évolutifs, grâce au développement du Data Mesh. Cela permet une approche plus distribuée du stockage et de l’analyse des données. De plus, l’utilisation croissante de l’apprentissage automatique et de l’IA peut automatiser l’analyse des données, fournissant des insights plus avancés.

Cependant, sans une gestion adéquate, les lacs de données peuvent devenir des « marécages de données », avec des données devenant désorganisées et difficiles à trouver et à utiliser.

L’ingestion et l’intégration des données peuvent également être longues et complexes. Mais ils sont le choix par excellence lorsqu’il est nécessaire de stocker de grands volumes de données brutes, non structurées, ou lorsque le traitement des données en temps réel ou quasi temps réel est requis.

En profondeur

ENTREPOTS DE DONNEES

Les avancées

  1. Convergence des lacs de données et des entrepôts de données : Cela permet une approche plus unifiée du stockage et de l’analyse des données, réduisant le besoin de mouvements de données et augmentant l’efficacité.

  2. Streaming plus facile des données en temps réel : Cela permet des insights plus opportuns et une prise de décision plus rapide.

  3. Intégration de modèles d’apprentissage automatique et de capacités d’IA : Cela peut automatiser l’analyse des données et fournir des insights plus avancés.

  4. Identification et résolution plus rapides des problèmes de données : Cela améliore la qualité et la fiabilité des données.

Les limites

  1. Les entrepôts de données peuvent être complexes et coûteux à mettre en place et à maintenir.

  2. Ils peuvent ne pas convenir aux données non structurées ou au traitement des données en temps réel.

 

Meilleurs scénarios pour l’implémentation :

  1. Lorsqu’il est nécessaire d’avoir des données structurées, historiques pour le reporting et l’analyse.

  2. Lorsque les données de différentes sources doivent être intégrées et cohérentes.

LACS DE DONNEES

Les avancées

  1. Développement du Data Mesh : Cela permet une approche plus distribuée du stockage et de l’analyse des données, augmentant la scalabilité et la flexibilité.

  2. Utilisation croissante de l’apprentissage automatique et de l’IA : Cela peut automatiser l’analyse des données et fournir des insights plus avancés.

  3. Outils favorisant une approche structurée de développement-test-publication pour l’ingénierie des données : Cela peut améliorer la qualité et la fiabilité des données.

Les limites

  1. Les lacs de données peuvent devenir des « marécages de données » s’ils ne sont pas correctement gérés, avec des données devenant désorganisées et difficiles à trouver et à utiliser.

  2. L’ingestion et l’intégration des données peuvent être longues et complexes.

Meilleurs scénarios pour l’implémentation :

  1. Lorsqu’il est nécessaire de stocker de grands volumes de données brutes, non structurées.

  2. Lorsque le traitement des données en temps réel ou quasi temps réel est requis.

 

En conclusion, les entrepôts de données et les lacs de données ont tous deux leurs avantages et limites. Le choix entre eux dépend des besoins spécifiques et des circonstances de l’organisation.

C’est comme choisir entre une bibliothèque et un océan – les deux ont leur charme, mais le choix dépend de ce que vous recherchez. Ainsi, que vous soyez un passionné de technologie ou un leader d’entreprise, comprendre ces deux outils peut vous aider à prendre des décisions éclairées dans le monde de la technologie.

Après tout, dans le monde des données, la connaissance, c’est le pouvoir !

Cet article vous a inspiré ?
Clients

Refonte et Data stratégie : ORM au cœur de la donnée

Une expertise dans le traitement de la Donnée
Des compétences expertes en datavisualisation
Intégration continue et automatisation des mises en production

Au-delà de nos missions consulting, chez DATANALYSIS se remettre en question fait aussi partie intégrante de nos  engagements quotidiens et les retours d’expérience de nos clients nous permettent d’avancer et d’aller plus loin dans notre service.

Orange est une entreprise multinationale française spécialisée dans les télécommunications. Elle offre une large gamme de services tels que la téléphonie mobile, la téléphonie fixe, l’internet haut débit et la télévision numérique à une clientèle globale. Orange est également engagée dans la fourniture de services IT et de solutions de connectivité pour les entreprises.

Client fidèle, Orange est très occupé tant la diversité de ses activités fuse !

Nous sommes donc très heureux qu’ils aient pris le temps de nous faire un retour sur l’accompagnement que nous leur prodiguons au quotidien.

Ce qu'ils disent de nous

" DATANALYSIS nous accompagne depuis 6 ans au quotidien et c’est naturellement vers eux que nous nous sommes tournés pour notre projet stratégique de refonte de notre infrastructure et de nos outils data "

Tout au long du projet et jusqu’à aujourd’hui encore, DATANALYSIS est un partenaire précieux intervenant à chaque étape clé :

 

  • Leur expertise dans le traitement de la donnée est essentielle pour nous aider à collecter, nettoyer et analyser efficacement nos données.
  • Leurs compétences en data visualisation permettent de développer des tableaux de bord clairs et compréhensibles pour nos utilisateurs mais aussi de mettre en place des dispositifs de formation adéquats.
  • DATANALYSIS a également joué un rôle important dans la mise en place de l’intégration continue et dans l’automatisation de nos mises en production.

 

Leur flexibilité et leur agilité sont particulièrement appréciées et démontrent une capacité d’adaptation pour répondre à nos besoins.

 

En une phrase : un domaine d’expertise varié autour de la data et au service des clients ! »

Ce retour d’expérience vous a inspiré et fait écho a certaines problématiques présentes dans votre entreprise ?

N’hésitez pas nous contacter, nous vous aiderons à prendre des décisions éclairées.

Artificial Intelligence, Business Intelligence, Data Governance, Data Marketing, Data visualisation, L'entreprise, Machine Learning, Self-service Analytics, Technology

Maîtriser Vos Données : l’essence et l’impact du catalogue de données décryptés

Dans le monde hyperconnecté d’aujourd’hui, où les données sont considérées comme le nouvel or, savoir les gérer et les exploiter s’avère essentiel pour les entreprises souhaitant prendre des décisions éclairées et rester compétitives. Le concept de « Data catalog », ou catalogue de données, émerge comme une réponse clé à ce défi, offrant une boussole dans l’océan vaste et souvent tumultueux des données.

Cet article vise à éclairer les enjeux et les avantages des data catalog, ces bibliothèques modernes où les metadonnées ne sont pas seulement stockées, mais rendues compréhensibles et accessibles. À travers l’automatisation de la documentation des metadonnées et la mise en place d’une gouvernance des données collaborative, les catalogues de données transforment la manière dont les organisations accèdent, comprennent et utilisent leurs précieuses informations.

En facilitant la découverte et le partage des données fiables, ils permettent aux entreprises de naviguer avec assurance vers une stratégie véritablement pilotée par les données.

Mais encore…

Un Data catalogue est un outil centralisé conçu pour gérer efficacement les données au sein d’une organisation. Selon Gartner, il maintient un inventaire des données actives en facilitant leur découverte, description et organisation.

L’analogie basique serait de dire qu’il s’agit d’un répertoire, une sorte d’annuaire où les lecteurs trouvent les informations dont ils ont besoin sur les livres et où ils se trouvent : titre, auteur, résumé, édition et avis des autres lecteurs.

Le but d’un data catalogue est de rendre la gouvernance des données collaborative, en améliorant l’accessibilité, l’exactitude et la pertinence des données pour l’entreprise. Il soutient la confidentialité des données et la conformité réglementaire grâce à un traçage intelligent du lignage des données et un suivi de la conformité​​.

Voici 5 raisons pour vos équipes data d'utiliser un data catalogue :

Data analysts / Business Analysts

Ils utilisent le data catalogue pour trouver et comprendre les données nécessaires à leurs analyses. Cela leur permet d’avoir accès rapidement aux données pertinentes, d’appréhender leur contexte et de garantir leur qualité et leur fiabilité pour les rapports et les analyses.

 

Data Scientists

Le data catalogue est essentiel pour localiser les datasets nécessaires à leurs modèles de machine learning et d’intelligence artificielle. Il facilite également la compréhension des métadonnées (provenance des données et les transformations qu’elles ont subies) ce qui est capital pour le pré-traitement des données.

 

Data Stewards (gestionnaires de données)

Ce sont eux qui sont responsables de la qualité, de la disponibilité et de la gouvernance des données. Ils utilisent le data catalogue pour documenter les métadonnées, gérer les standards de données, et surveiller la conformité et l’utilisation des données au sein de l’organisation.

 

Responsables de la conformité et de la sécurité

Le data catalogue les aide à assurer que les données sont gérées et utilisées conformément aux réglementations en vigueur, comme le RGPD pour la protection des données personnelles. Ils peuvent l’utiliser pour suivre l’accès aux données sensibles et auditer l’utilisation des données.

 

Architectes et ingénieurs de données

Ces techniciens s’appuient sur le data catalogue pour concevoir et maintenir l’infrastructure de données. Il leur fournit une vue d’ensemble des données disponibles, de leur structure et de leur interrelation, facilitant ainsi l’optimisation de l’architecture de données et l’intégration de nouvelles sources de données.

Attention il est important de noter que les utilisateurs métiers ne sont pas moins en reste de cet outil. En effet bien qu’ils ne soient pas des utilisateurs techniques, ils profitent du data catalogue pour accéder aux informations et insights nécessaires à la prise de décision. Le répertoire leur permet de trouver facilement les données pertinentes sans nécessiter de connaissances techniques approfondies.

Ce qu'il faut retenir

Un data catalogue sert à :

 

  • Améliorer la découverte et l’accès aux données

 

  • Renforcer la gouvernance des données

 

  • Améliorer de la qualité et de la fiabilité des données

 

  • Faciliter la collaboration entre les équipes

 

  • Optimiser l’utilisation des ressources de données

 

Grâce aux Data catalogues, tout comme nous le faisons désormais avec notre propre solution révolutionnaire DUKE, naviguez dans le paysage complexe des données dès aujourd’hui, offrez-vous le luxe d’accéder efficacement, de gérer et d’exploiter les données pour soutenir la prise de décision éclairée et l’innovation en entreprise.

Faites brillez vos équipes Data dès aujourd’hui et plongez sans plus attendre au cœur de notre projet DUKE

Clients

MARKET TRENDS a révolutionné l’analyse du marché immobilier mauricien pour ses clients grâce à Power BI & Business Lab Consulting

Elaboration de tableaux de bord immobiliers interactifs pour une meilleurs visualisation des tendances
Instauration d’une culture axée sur la data pour une meilleure prise de décision
Valorisation des données clés pour une meilleure autonomie des clients

Market Trends, spécialisée dans l’analyse de données immobilières, a pour mission de fournir des informations pertinentes sur les évolutions du marché immobilier mauricien.

Avec une croissance rapide et une demande croissante pour des rapports plus détaillés et interactifs, l’entreprise a rencontré des défis, notamment la maîtrise du logiciel Power BI et la flexibilité des contenus selon les spécificités des clients (langue, affichage sur-mesure).

C’est dans ce contexte que Business Lab Consulting LTD est intervenu, proposant une solution moderne de Business Intelligence (BI) et de data visualisation. Grâce à cette collaboration, Market Trends a pu automatiser la génération de rapports, offrant ainsi des tableaux de bord esthétiques, ergonomiques et évolutifs.

Ces dashboards permettent désormais aux clients de manipuler les données en toute autonomie, renforçant ainsi leur confiance dans les insights fournis.

Ce qu'ils disent de nous

"Chez Market Trends, la data est au cœur de notre activité. Grâce à Business Lab Consulting LTD, nous avons non seulement gagné du temps dans l'exécution des rapports, mais nous avons également pu offrir à nos clients des rapports plus esthétiques qui valorisent mieux les données clés. Leur équipe a fait preuve d'une grande adaptabilité et a su comprendre nos besoins spécifiques. Je recommanderais leurs services sans hésitation."

Alix Tennant, Consultante en immobilier

La collaboration avec Business Lab Consulting LTD a été un tournant pour Market Trends. Avec un suivi et un support exceptionnels, l’équipe de Business Lab Consulting LTD a su répondre aux besoins spécifiques de Market Trends, malgré les contraintes rencontrées en cours de route.

Aujourd’hui, grâce à cette transformation, Market Trends est en mesure de fournir des insights plus précis et interactifs à ses clients, renforçant ainsi sa position en tant que leader dans l’analyse du marché immobilier mauricien.

Ce retour d’expérience vous a inspiré et fait écho a certaines problématiques présentes dans votre entreprise ?

N’hésitez pas nous contacter, nous vous aiderons à prendre des décisions éclairées.

Artificial Intelligence, Business Intelligence, Data Governance, Data Marketing, Data Mining and Data Integration, Data Quality Management, Data Regulations, Data visualisation

DATA: Les 7 pièges à éviter, Ep 4/7 – Erreurs statistiques – Les faits sont des choses têtues, mais les statistiques sont malléables

« Il y a des mensonges, des maudits mensonges et des statistiques » B.Disraeli

 

Pourquoi un tel dégoût pour un domaine qui, selon le Merriam-dictionnaire Webster, est simplement « une branche des mathématiques traitant de la collecte, de l’analyse, de l’interprétation et de la présentation de masses de données numériques. »1 Pourquoi le domaine de la statistique est-il sous un jour si négatif par tant de personnes ?

Il y a quatre raisons principales à cela

  • C’est un domaine complexe. Même les concepts de base ne sont pas accessibles aisément et sont très difficile à expliquer
  • Même les experts les mieux intentionnés peuvent mal appliquer les outils à leur disposition
  • La troisième raison derrière toute cette haine est que ceux qui ont un agenda peuvent facilement créer des statistiques pour mentir lorsqu’ils communiquent avec nous
  • La dernière raison est que les statistiques peuvent souvent sembler froides et distantes, rendant l’appropriation très complexes par le public

Les Déboires descriptifs

Les statistiques descriptives ont pour objectif de résumer les principales caractéristiques d’un ensemble de données. Cependant, un usage incorrect ou inapproprié peut conduire à des conclusions trompeuses. Un exemple typique est l’utilisation de la moyenne pour résumer une distribution, sans tenir compte de la variabilité ou de l’asymétrie. Une autre erreur courante est de présenter des pourcentages sans expliquer l’effectif total, ce qui peut induire en erreur sur l’ampleur réelle d’un phénomène. Il est donc crucial de comprendre les hypothèses et les limites de chaque mesure descriptive pour l’utiliser correctement.

Prenons l’exemple de l’analyse des salaires au sein d’une entreprise. Si l’on se contente de regarder la moyenne des salaires, on pourrait conclure que l’entreprise rémunère bien ses employés. Cependant, si les salaires de la direction sont très élevés comparativement au reste des employés, la moyenne serait biaisée à la hausse. Il serait plus pertinent d’utiliser la médiane qui donne le salaire du milieu, ou encore de regarder la distribution complète des salaires pour avoir une vue plus précise.

Cette erreur est très bien décrite ici avec des chats :

Les Incendies inférentiels

Toujours une explication féline :

L’inférence statistique vise à tirer des conclusions sur une population à partir d’un échantillon de cette population. Cependant, ce processus est sujet à des erreurs. Les erreurs d’échantillonnage et les erreurs de type I et II sont courantes. De plus, les erreurs peuvent être exacerbées par la confusion entre corrélation et causalité. Il est essentiel d’avoir une solide compréhension des principes de l’inférence statistique pour éviter ces pièges.

Imaginons une étude de santé publique cherchant à établir un lien entre une habitude alimentaire particulière (comme manger bio) et un meilleur état de santé général. Si l’étude conclut à une corrélation positive, cela ne signifie pas forcément que manger bio cause un meilleur état de santé. Il pourrait y avoir des facteurs de confusion, comme le niveau de revenu ou le mode de vie, qui influencent à la fois l’habitude alimentaire et l’état de santé. Ici, on peut tomber dans le piège de confondre corrélation et causalité.

L'Échantillonnage glissant

L’échantillonnage est une étape cruciale dans tout processus de collecte de données. Pourtant, de nombreuses erreurs peuvent survenir à ce stade. L’échantillon peut ne pas être représentatif de la population cible, en raison de biais de sélection ou de non-réponse. De plus, la taille de l’échantillon peut être insuffisante pour détecter un effet. Il est donc essentiel de planifier soigneusement l’échantillonnage pour obtenir des résultats fiables.

Considérons une enquête de satisfaction client menée par une entreprise de commerce en ligne. Si l’entreprise ne sollicite que les avis des clients qui ont fait un achat récent, elle risque d’obtenir une image faussée de la satisfaction globale de sa clientèle. En effet, les clients insatisfaits peuvent avoir cessé de faire des achats et donc ne pas être inclus dans l’échantillon. C’est un exemple de biais de sélection.

L'insensibilité à la taille de l'échantillon

Une erreur courante dans l’analyse de données est d’ignorer l’impact de la taille de l’échantillon sur les résultats. Une taille d’échantillon importante peut rendre significatif un effet très faible, tandis qu’une taille d’échantillon trop petite peut ne pas avoir la puissance suffisante pour détecter un effet existant. De plus, la signification statistique ne signifie pas nécessairement une signification pratique. Ainsi, il est important de considérer la taille de l’échantillon dans l’interprétation des résultats.

Supposons que vous meniez une étude pour évaluer l’effet d’un médicament sur la baisse de la tension artérielle. Si vous avez un très grand échantillon de patients, vous pourriez constater une baisse statistiquement significative de la tension artérielle. Cependant, cette baisse peut être très faible, disons 0.1 mm Hg, une valeur cliniquement insignifiante malgré sa significativité statistique. C’est un exemple où la taille de l’échantillon peut rendre un effet faible significatif. D’un autre côté, si l’échantillon est trop petit, on peut passer à côté d’un effet réel. Il est donc important de considérer l’importance clinique ou pratique en plus de la significativité statistique.

En approfondissant cette question, Ben Jones (voir auteur ayant inspiré cet article) a réussi à trouver des chiffres sur le taux de cancer du rein ainsi que les données démographiques pour chaque comté américain, et il a créé un tableau de bord interactif (figure ci-dessous) pour illustrer visuellement le fait que Kahneman, Wainer et Zwerlink sont faire assez clairement dans les mots.

Remarquez quelques éléments dans le tableau de bord. Sur la carte choroplèthe (remplie), les comtés orange les plus foncés (taux élevés par rapport au taux global des États-Unis) et les comtés bleus les plus foncés (taux faibles par rapport au taux global des États-Unis) sont souvent côte à côte.

De plus, notez comment dans le nuage de points sous la carte, les marques forment une forme d’entonnoir, avec des comtés moins peuplés (à gauche) plus susceptibles de s’écarter de la ligne de référence (le taux global des États-Unis), et des comtés plus peuplés comme Chicago, L.A. , et New York sont plus susceptibles d’être proches de la ligne de référence globale.

 

Une dernière observation : si vous survolez un comté avec une petite population dans la version interactive en ligne, vous remarquerez que la moyenne

le nombre de cas par an est extrêmement faible, parfois 4 cas ou moins. Une petite déviation – même juste 1 ou 2 cas – dans une année suivante tirera un comté du bas de la liste vers le haut, ou vice versa.

 

Dans le prochain article, nous allons explorer le 5eme type d’erreur que nous pouvons rencontrer lorsque nous utilisons les données pour éclairer le monde qui nous entoure : Les aberrations analytiques.

Cet article est inspiré fortement par le livre « Avoiding Data pitfalls – How to steer clear of common blunders when working with Data and presenting Analysis and visualisation” écrit par Ben Jones, Founder and CEO de Data Litercy, edition WILEY. Nous vous recommandons cette excellente lecture!

Company, L'entreprise, Partenaires

La Prime Régionale pour l’Emploi de FEDER, un soutien essentiel pour notre croissance

Le développement d’une entreprise passe par différentes étapes et nécessite souvent le soutien de partenaires et d’organismes pour assurer sa croissance. Récemment, notre société a bénéficié d’une Prime Régionale pour l’Emploi de la part du Fonds Européen de Développement Régional (FEDER) pour la création de trois postes supplémentaires. Cette aide a été déterminante dans le développement de notre équipe et nous sommes heureux de partager notre expérience avec vous.

L’aide financière accordée par le FEDER a été un véritable catalyseur pour notre entreprise. En effet, grâce à cette prime, nous avons pu embaucher trois nouveaux collaborateurs aux compétences diverses et complémentaires. Ces nouvelles recrues ont permis d’étoffer notre équipe et de renforcer notre expertise dans des domaines clés pour notre activité.

Cet appui financier a également eu un impact positif sur notre environnement local. En créant de nouveaux emplois, nous contribuons au développement économique de notre région et à la réduction du chômage. De plus, la Prime Régionale pour l’Emploi nous a incités à recruter des personnes résidant à proximité de notre entreprise, favorisant ainsi la cohésion sociale et le dynamisme de notre territoire.

En outre, cette prime a également contribué à améliorer la qualité de nos services et produits. Les compétences apportées par nos nouvelles recrues nous ont permis d’innover et d’optimiser nos processus internes. Ainsi, notre entreprise est devenue plus compétitive sur le marché, tout en offrant des opportunités de carrière à des personnes talentueuses.

Enfin, cette expérience nous a démontré l’importance de l’accompagnement et du soutien des organismes tels que le FEDER. Cela nous a également encouragés à nous rapprocher d’autres partenaires et à rechercher d’autres opportunités de financement et de développement pour notre société.

En conclusion, la Prime Régionale pour l’Emploi de FEDER a été un tremplin essentiel pour notre entreprise et notre équipe. Grâce à cet appui, nous avons pu créer de nouveaux emplois, renforcer notre expertise, et contribuer au développement économique local. Nous remercions chaleureusement le FEDER pour son soutien et sommes impatients de poursuivre notre croissance en partenariat avec d’autres acteurs de notre écosystème régional.

Business Intelligence, Company, CRM, Data Governance, Data Marketing, Data Mining and Data Integration, Data visualisation, L'entreprise, Machine Learning, Self-service Analytics, Technology

OFFRE D’EMPLOI-CONSULTANT DATA ENGINEER H/F – CDI

En recherche d’un nouveau challenge ?

Votre mission :

Accompagner nos clients dans leurs projets de transformation numérique et d’analyse de données.

Partenaires majeurs des entreprises de l’océan Indien pour leurs projets autour de la donnée, Datanalysis dans le cadre de son expansion recrute un Data Engineer

Véritable actif stratégique des entreprises, la donnée est aujourd’hui au cœur des enjeux de performance économique et concurrentielle. Nos équipes maîtrisent parfaitement son cycle de vie et les leviers pour que cette donnée devienne une information précieuse. Pour nous aider à aller encore plus loin et pour offrir une expertise additionnelle à nos clients, nous recherchons un profil alliant expertises technologiques et savoir-faire métier pour participer à la réalisation des projets de Data.

Intégré dans une équipe de 17 consultants sénior spécialisés en BI Self-Service, en Data visualisation, Machine Learning et IA, votre poste vous amènera sur les tâches suivantes :

  • Conception et mise en place de pipelines de données pour collecter, stocker et traiter les données chez nos clients
  • Optimisation de la performance et de l’évolutivité des systèmes de stockage de données pour améliorer les processus de nos clients
  • Mise en place de processus pour assurer la qualité des données et ainsi aider nos clients à prendre des décisions informées
  • Collaboration avec les équipes de développement pour intégrer les données dans les applications de nos clients
  • Mise en place de systèmes de surveillance pour assurer la disponibilité et l’intégrité des données pour nos clients

Vous aimez relever de nouveaux challenges. Vous savez faire preuve d’engagement pour réussir et évoluez aisément dans un environnement dynamique.

Vous vous intéressez naturellement à vos clients pour savoir dans quelle mesure vous pouvez les aider à résoudre leurs problèmes.

Vous possédez un bon esprit d’analyse et de synthèse, un excellent relationnel.

 

VOUS PROFITEREZ PLEINEMENT DE CE POSTE SI…

 

  • Vous disposez d’une forte appétence pour les nouvelles technologies
  • Expérience professionnelle dans la conception et la mise en place de pipelines de données pour des clients
  • Connaissance des outils de stockage de données tels que Hadoop, Spark, et NoSQL pour les implémenter chez nos clients
  • Connaissance des outils de gestion de données tels que Airflow, NiFi, ou Talend pour les implémenter chez nos clients
  • Bonne connaissance de SQL et des bases de données relationnelles pour les implémenter chez nos clients
  • Bonne connaissance des méthodes d’analyse de données pour les implémenter chez nos clients
  • Bonne capacité à communiquer en anglais et en français pour travailler efficacement avec nos clients
  • Vous faites également preuve également de capacités de gestion de projet, de recueil de besoins

La curiosité, l’intérêt pour le monde de la donnée, de la data visualisation et de l’IA sont des vrais plus.

Enfin, et surtout, vous êtes chaleureux, souriant et dynamique ! Vous aimez rendre service en apportant du soin à la qualité de votre travail.

 

OÙ TRAVAILLEREZ-VOUS ?

Le poste est basé à Saint Paul de la Réunion. Des déplacements sur toute l’île, et potentiellement sur l’île Maurice et Madagascar sont à prévoir.

 

POURQUOI REJOINDRE DATANALYSIS ?

We are data people and we rock, like you !

Business Intelligence, Data visualisation, Self-service Analytics, Stage, Technology

LE STORYTELLING de Sephora Panchbaya

Passionnée par l’analyse de données, à la recherche d’un stage et investie dans un projet très innovant au sein de son école, sa candidature a très rapidement retenu notre attention. Aucun regret! Nous avons partagé ces derniers mois à ses côtés…pépite !
Elle vous en dit plus :

À la sortie de mon BAC S, j’ai fait une première année de cours préparatoires en mathématiques et physique dans l’optique de devenir ingénieure. Un an après, j’ai réalisé que les cours théoriques ne me convenaient plus et que je voulais faire autre chose.

Je me suis donc dirigée vers Epitech, une école en 5 ans qui forme des experts en technologies de l’information et je me suis orientée vers le développement de jeux vidéo. Après la première année, je me suis rendu compte que ce monde n’était pas pour moi non plus.

Ayant un fort attrait pour les mathématiques et les statistiques, j’ai pendant longtemps cherché ce que je pourrai faire dans l’avenir.

Je me suis donc penchée sur le domaine de l’analyse de données. J’ai toujours trouvé fascinant tout ce qui pouvait être révélé lorsque l’on prenait le temps de comparer et d’analyser des données. Cependant, il est aussi facile de les manipuler pour leur faire dire ce que l’on souhaite.

Pour pouvoir me conforter dans cette idée, j’ai souhaité réaliser un stage au cœur de ce domaine pour ma 3e année. C’est là que j’ai rencontré Datanalysis, une petite entreprise réunionnaise et à fond dans l’innovation.

Durant les 4 mois qui ont suivi, j’ai pu m’intégrer très vite à leur équipe, découvrir leur monde et ce qu’ils y font.

J’ai pu réaliser diverses missions en interne qui m’ont permis d’acquérir énormément de connaissances dans ce domaine en peu de temps et de manière autonome. J’ai par exemple, appris à maîtriser Tableau Software, un outil majeur dans la visualisation de données mais également plein d’autres outils qui me seront très utiles dans l’avenir.

A la suite de ce stage, je m’envolerai vers une université d’Irlande pour me spécialiser dans la Data Analytics !

Nous sommes fiers d’avoir pu travaillé à ses côtés et de lui avoir fait découvrir l’accessibilité et la transparence des données. Nous encourageons tous les futurs étudiants, les passionnés, les déterminés ou même personnes en reconversion à découvrir ce « monde » qui nous entoure !

Découvrir notre playground !